
Journal of Quality and Technology Management
Volume IX, Issue II, December 2013, Page 107–136

REQUIREMENTS ANALYSIS ALGEBRA:

DESIGNING QUALITY SOFTWARE

A. Nasir, A. Shah & M.U.G. Khan
Department of Computer Science and Engineering,

University of Engineering and Technology, Lahore, Pakistan

ABSTRACT

For software systems to be of good quality and acceptable to users, it is pre-
requisite that the software developed so far must conform to user’s needs at its
best. Moreover, quality requirements are essential for a software system to be
developed. The software must comply with users’ requirements either functional
and/or non-functional. The process of gathering and analyzing essential and
complete user requirements is challenging one. As development of cloud
applications is concerned, the requirements gathering and analysis process seems
to be more complex due to crucial nature of user requirements particularly
encompassing additional security requirements. Key challenge in cloud
computing is data security so securities concerns are supposed to be the most
essential factor in the domain of cloud computing applications. Such challenge
demands a formally secure System Development Life Cycle (SDLC). Our
research study proposes requirement analysis algebra that may provide a formal
basis to requirement engineering and consequently may help the analyst in
analyzing both functional and security requirements of cloud applications to be
developed. The application of algebra proposed may enhance understanding of
system requirements phase and improve the security requirements significantly.

Keywords: Requirement Engineering, Requirement Algebra, Performance
Monitoring, Cloud Application

1) INTRODUCTION

Key challenge in cloud computing is data security so securities concerns
are supposed to be the most essential factor in the domain of cloud
computing applications. Such challenge demands a formally secure
System Development Life Cycle (SDLC). A mathematical model to
incorporate security requirements during development life cycle of a
cloud computing application is introduced in our research study. To
provide complete guideline to handle and incorporate security

Requirements Analysis Algebra:Designing Quality Software

108|

requirements during life span of cloud computing environment, the
Requirement Algebra (RA) as a tool is introduced and then used.
Requirement Algebra (RA) can also be used for all such application
domains where security is curious. For better understanding of the RA of
functional and security requirements during analysis, a practical example
of E-Legal system has been considered. Its detail is given in section 3.

The process of requirements gathering and analysis during software
development is an important aspect and it’s a difficult and critical task
(Playle et al., 1996). The dependency of quality software on requirement
gathering and their analysis cannot be under estimated (Microsoft, 2003;
Holtzblatt et al., 1995). For cloud computing applications in which
security is a major concern, the difficulty level of software application
development is two fold because, gathering of functional and security
requirements and their analysis in these applications is a time-consuming
and pain-taking (Paolo et al.,2004). Identifying both functional and
security related requirements and to find out inter and intra dependency
relationships is a complex task (Mostert et al., 1995). The ever changing
user requirements and security issues of the dynamic applications
demands mathematical modeling techniques to be introduced for
software design.

There exists, intra-relationships within the two sets of requirements, i.e.,
set of functional and set of security requirements and the inter-
relationships between these two sets of requirements. The two sets of
requirements are referred to as the set of operands of the proposed
requirement analysis algebra. A set of operations/operators are defined
as “operate on the set of operands”. E-Legal system proposed in section-3
not only covers the homogenous but includes the heterogeneous domains
such as Online-Banking collaboration with E-Legal and Prison
Management consequently its complexity is twofold. Like any other
internet based computing, major concern about Cloud Computing is its
security (Harauz et al., 2009, Furht et al., 2010).

Mathematical modeling is speculated to be the best way to elaborate the
security requirements (i.e. formalism) which helps to truly depict the
requirements during analysis and will be used during design of system.
To address this concern, interpretation of the operations and operands of
the functional and security requirements of an E-Legal system in the
cloud computing environment has been presented in the reaming part of

Journal of Quality and Technology Management

|109

the paper. The proposed Requirement Analysis Algebra presented so far
may serve as foundation for the secured design of cloud applications. It
can be helpful in analyzing applications in the analysis phase of the
proposed methodology. The salient feature of the algebra is that it built a
table of user verse their opted requirements using the Opt operator (see
Section 4.3.4). The remainder of the paper is organized as follows. In
Section 2, we give the related work. In Section 3, we give a running
example and its details. This example is used to elaborate working of the
proposed algebra. The proposed requirement analysis algebra is
presented in Section 4. Whereas, implementation of the RAA is provided
in Section 5. In Section 6, we give concluding remarks and future
directions of this work.

2) LITERATURE REVIEW

According to National Institute of Standards and Technology (NIST),
Cloud Computing is a shared pool of virtual resources such as hardware
and software entities(like servers, network and software application
services) to be provided on request as and when ever required that is
scalable and managed with nominal effort (NIST, 2009). Different types of
cloud computing deployments include “Public” (open to any customer
for usage), “Private” (specifically for an exclusive use to limited type of
the users, like a Virtual Private Network) and “Hybrid” i.e. combination
of both public and private, (Ran, L.; et al., 2010).

Cloud computing is a new era in the computing world and getting
popularity due to its various advantages. It is playing a vital role these
days in various application domains enabling organizations to enhance
their services by utilizing its economical power (Zheng, 2010). Cloud
Computing is economical because of utilization of the idle I.T. resources
through improving utilization rate and reducing power consumption
(Berl et al., 2010).

Internet based computing services such as Cloud is the most incredibly
and dynamically growing computer technologies in this modern era.
(Leavitt, 2009) reported that the cloud adoption rate has tremendously
accelerated. The number of users accessing the Cloud applications is
growing exponentially all over the world (Buyya et al., 2009). One of the
example of cloud computing is G-mail. Cloud computing is a scale-able
pool of virtual resources (hardware, software and data etc.), promising

http://www.sciencedirect.com/science/article/pii/S0167739X08001957

Requirements Analysis Algebra:Designing Quality Software

users to access these resources at anytime, anywhere through internet. For
most of the users it is not different from the web services, however,
technically both services have different attributes such as scalability,
flexibility and resource pooling and these are the key differences of the
Cloud (Dan Svantesson et al., 2010).

2.1) Cloud Computing Services

Cloud computing is playing an important role these days in various fields
enabling the Organizations to improve their service delivery by utilizing
its economical power (Raj et al.,2011). Cloud computing paradigm is a
transit from the single customer approach towards scalable multi-users
on multi-platform computing services through Internet (King, 2008).
Software as a Service (SaaS) are software applications that are provided as
a service to the users. Financial, Inventory, Supply chain application, HR
and CRM are most common categories of Software as a Service; the most
prominent vendor in this category is Salesforce.com. The payment of the
software is on use basis and does not require any capital investment by
the user (Armbrust et al., 2010).

110|

Figure 1: Main Services of Cloud Computing

A SaaS consisting of a single workload is most cost effective for the
provider to manage and is therefore most economical model. SaaS
suppliers offer the services accessible by using web browser, which does

SaaS
(G‐mail)

PaaS
(Google

Applications)

IaaS
(Amazon web services)

Cloud

Physical
Resources

Cloud Connection
Security

Virtual Layer

http://link.springer.com/search?facet-author=%22Pethuru+Raj%22

Journal of Quality and Technology Management

|111

net users are using cloud services in one-
ay or the other (Yunis, 2009).

otential of this new
merging platform of the future (Glott et al., 2011).

ll as
e inter-relationship between security and functional requirements.

not require any installation by the end-user premises. Common examples
include Google’s Gmail, Google Search, Microsoft’s Business Online
Productivity Suite, Microsoft Customer Relationship Management (CRM),
Microsoft Office Live, salesforce.com on demand applications etc. In
contrast to IaaS, SaaS provide solutions of the specific problem that
includes software applications hosted as service, provided to customer.
As in the perspective of SaaS, one program is sufficient to serve millions
of users with the ultimate benefit of cost saving (Jaeger et al., 2008).
Approximately, 50% of the inter
w

Cloud computing extends cross-organizational and regional boundaries
(Sasaki, 2011). Since cloud services are available globally across the board
on multi-platforms. Therefore, security and privacy issues of cloud
computing have to be resolved, to utilize full p
e

Due to peculiar characteristics of cloud computing, there are many
problems in this new computing environment and security concern is one
of the major issues of the users and service providers (Armbrust et al.,
2010). Security requirements may affect the working of software (Rashid
et al., 2003). Privacy should be integrated at every stage of software
development instead of together the screw at some later stage (Ran, L.; et
al., 2010). It has also been observed (Giorgini et al., 2005), that Security
requirements often conflict with each other, as well as with other
requirements. Therefore, it is important to understand the intra-
relationship of security and functional requirements separately, as we
th

It has been emphasized revision of existing development methodologies
to ensure security of cloud application throughout the development life-
cycle (Javier et al., 2008). The concept of cloud computing cannot be
successfully implemented, until and unless a secured mechanism is
introduced. It is therefore justifiable to investigate and propose
methodologies to ensure reliability and security of cloud computing,
which requires in-depth study and analysis that how security to be
considered for modelling and development; from the initial phase to
obtain secure cloud systems. The formal methods are disciplined
techniques so its usage is helpful for specification, development and
verification of software (Chen et al., 2004). An example of such successful

Requirements Analysis Algebra:Designing Quality Software

112|

t

istent with its
quirements, and to model its properties and attributes.

roposed may serve as secured foundation for the whole future IT world.

) E-LEGAL SYSTEM

ab system etc. That is why; it best suits to elaborate our research work.

es, law
nforcement agencies, Forensic Labs., and the litigant public etc.

ng, Court Proceedings, Workflow,
ourt’s decision and judgment etc.,

implemen ation of formal methods to ensure software security is type
checking (Chen et al., 2002), is an integral feature of modern
programming languages like Java and C#. The formal methods best suit
to precisely specify such requirements to be addressed during
architecture and design stages (George et al., 2003). According to (Butler
et al., 1995) mathematical (or formal) methods and notations are used to
precisely define the behaviour of the software, cons
re

Since formalism is considered the best way to maintain maximum level of
accuracy in terms of security, therefore Requirements Analysis Algebra
p

3

In order to understand requirement algebra of the functional and security
requirements during analysis of a cloud application development, real life
example of E-Legal system is being discussed as a representative of all
application domains. An E-Legal system is aggregation of various
domains, because of its interaction with other application such as Prison
Management, On-line Banking, E-Govt., Solicitor Management, Forensic
L

However, due to peculiar characteristics of cloud computing, its
utilization varies from domain to domain. Although, electronic legal
system is beneficial in dispensation of fast and transparent justice to
litigants as well as legal fraternity but at the same time its utilization in
legal domain is still questionable due to security and privacy of the
information and sharing of such information with the other stakeholders
of the legal system such as Government Prosecutors, Advocat
e

The electronic legal system in a court of law is part of judicial process and
includes different sets of electronic functions and technology gadgets to
support the Court’s working. Different working modules are shown in an
electronic legal system (see Figure 2) for example Electronic Case Filing,
Scrutiny, Case Fixation, Scheduli
C

http://dl.acm.org/author_page.cfm?id=81540485756&coll=DL&dl=ACM&trk=0&cfid=302183993&cftoken=98362169

Journal of Quality and Technology Management

|113

Figure 2: Abstract view of E_Legal System Modules

Case Filing is the first and foremost important step of the judicial process,
which is the foundation of a legal proposition. Maximum contents (e.g.
attaching copies of documents such as FIR, Medical report, Fardmalkiat,
stamps, grievance and provision of law) of the case are added at this stage
and all these types of contents fall into different types of categories. So, at
the one end the data diversity is high at this stage of the legal system and
at the other hand its volume is very high. A number of steps/procedures
(as given in Figure 3) are involved at the time of filing a case. Moreover,
payment of the court fee depicts financial aspect of the case. Hence
security level required during filling of a case is very curious. Electronic

Requirements Analysis Algebra:Designing Quality Software

filing lets people get more of their work done with their PCs to send and
receive documents, pay filing fees, intimate other parties, receive court
notices, and retrieve court information etc. As shown in Figure 3, during
this process, documents and other court information is transmitted to the
court through an electronic medium.

Figure 3: DFD of E-Filling

During Case filing, Court fee is also paid and it also includes the case
diary process, scrutiny and allocation of Bench/Judge. After a case is
diarized, it is scrutinized against case law and other relevant court rules,
as provided in the check-list of objections. If the case has no objection then
case is considered as fit for hearing and a case number is assigned. The
System marks the case for hearing to a bench/judge depending on the
criteria set after checking the roster of available Judges. The case is also
allocated to a Bench on the basis of category or specialty (e.g. Civil or
Criminal) of the Judge and even on the basis of value involved or

114|

Journal of Quality and Technology Management

|115

sentence by lower court, if applicable (such as death life imprisonment
etc.).

4) REQUIREMENT ANALYSIS ALGEBRA (RAA)

In software engineering, requirements are categorized broadly into two
types, i.e., functional requirements and non-functional requirements. But
in the cloud application domain and some other application domains
(e.g., as web applications), during the development process main focus is
on security requirements of the applications and these requirements may
be considered as a part of functional requirements. But here we consider
functional requirements and security requirements separately. By
separating these two types of requirements, we can concentrate and
analyze security requirements, functional requirements and their
dependencies. To study and analyze both types of these requirements, we
propose Requirement Analysis Algebra (RAA). This algebra can play an
important role during analysis of all types of applications, particularly for
those applications in which security is a crucial factor. Before proposing
RAA we categorize requirements of an application and give their
properties in the next section.

4.1) Atomic and Composite Requirements

We categorize requirements in two types/categories, i.e., Atomic
requirement and Composite requirement. They are categorized on the
constituent basis of requirements. Assume that the set, F = {F1,
F2,F3…………Fn}, is the set of functional requirements of an
application/software. Each subset of the set F may be Atomic or Composite
requirement. We define a requirement to be an Atomic Requirement (AR),
if it is not further divisible into a sub-requirement(s). In the case study
given in Section 3, F34 (see details in Table 5.1), i.e., Issuance of the unique
case no is an Atomic requirement. We refer to a requirement as the
Composite Requirement (CR), if it is further divisible into one or more
atomic and/or composite requirement(s). For example, in the case study F8,

i.e., Submission of respondent information as a whole is a composite
requirement. Because F8 consists of Respondent’s Name(s), Address(s) and
Contact(s) etc. It is to be noted that in our RAA, all requirements are in
Atomic form and Composite requirements have been also decomposed in to
Atomic.

Requirements Analysis Algebra:Designing Quality Software

4.2) Requirement Types

In this section, we classify software requirements of an application based
on their functionality. This classification is done into two types, i.e.,
functional requirements and security requirements. The set of functional
requirements is denoted by F = {F1, F2,…..Fn}. Similarly, the set S is the set
of security requirements, and it is denoted by S = {S1, S2,…,Sm}. The set R
denotes both types of requirements (i.e., functional and security
requirements) of a software/application, and they are written as, R={F U
S}.

These two sets that are usually non-empty sets, i.e., S and F are operands
of the proposed RAA. The intra and inter operators of the proposed
algebra are defined in next Section.

4.3) Operators

In this section, we define operators of the proposed algebra. The proposed
operators operate on the operands that have already been defined earlier
in Section 4.1. These operators are formally defined in the next sections.

4.3.1) Need Operator

We define Need operator to develop the relationship between the two sets
F and S. If a security requirement, Sj, is a mandatory requirement for the
functional requirement, Fi, to make it secure, then we say that the security
requirement, Sj, is a Need (Nd) of the Fi requirement and it is denoted as;
Nd: F → S. The Nd operator is applied on the elements of the set F and it
returns elements of the set S, i.e., Nd(Fi) = Select (Sj); (�n: 1 ≤ i ≤ n) and
(�m: 1 ≤ j ≤ m) and 0 ≤ |Nd| ≥ n.

In other words, this operator finds security requirements of a given
functional requirement. In our case study given in section 3, the
functional requirement, F22, i.e., payment of court fee, Nd(F22) = {S13, S14, S15,
S16}, and using this operator Nd returns the element S13 Checking of
availability of funds in the relevant account, as the security requirement and
the elements S14, S15and S16 are also returned as security requirements of
the functional requirement F22.

116|

Journal of Quality and Technology Management

4.3.2) Vital Operator

We define Vital operator to find out the vitality of security requirements
for different functional requirements. If a security requirement, say Sj, is
required and it is mandatory for the functional requirement(s) Fi, then
Vital (ΰ) of Sj is Fi. We denote it as; ΰ(S) = F. The ΰ operator is applied to
elements of the set S, and it returns elements of the set F, i.e. ΰ(Sj) = Select
(Fi); (�n: 1 ≤ j≥m ��i: 1 ≤ j ≥n).Whereas1 < |ΰ (Sj)|> n

In our case study the set S9, i.e., On-line verification of advocate from Bar
Associations ΰ (S9) = {F1, F13, F19, F21} that means S9will vital for F1, F13,
F19 and F21 to make them secure.

4.3.3) Dependent Operator

To find out dependency among different elements of the set, R, of
requirements, we use the dependent operator and we denote it as Ď.
Whereas, set R is total requirement i.e. functional and security such that

R= F׫ S and F∩S=ɸ

If a requirement has pre-requisite(s) that may be functional or security
requirement(s), then the operator among them is referred as dependent.
This system (F, Ď) represent dependency among different functional
requirements. If a functional requirement, Fj, is dependent upon Fi, then Fi

is pre-requisite and should act before the action of Fj. We will denote it as;

Ď:F → F; ׊ Fi,FjЄF, Ď(Fi) = Fj, i#j. For example, in the case study (see

section 3) F3, i.e., Payment of E.F. Charges dependent upon, F2, Selection of
Electronic Facilities (EF). Similarly, dependency among security

requirements is represented as;.Ď:S → S; ׊Sm,Sn ЄS, Ď(Sm) = Sn ר m#n.

|117

Requirements Analysis Algebra:Designing Quality Software

4.3.4) Opted Operators

To capture the majority-honored requirements, we propose Opted
operator. This operator is denoted by Ỏpt, and it returns number of users
who have opted for a given functional requirements. The Ỏpt operator can
help the analysts in determining the percentage of users for each
requirement of an application, who have opted the requirement out of the
total number of requirements of the application.

For instance, U1, U2, U3,….Uk are the users and they have opted functional
requirements using the operator Ỏpt. Results of the operator Ỏpt got this
set of users are recorded in Table 1. This table is initially built during
Analysis Phase, and it can be used during and after development to
monitor functional requirement of an application. This monitoring can be
helpful to the system administrator in deciding the future of each
functional requirement/service.

Table 1: Monitoring of functional requirement

User F1 F2 F3 …> Fn-2 Fn-1 Fn

U1 Ỏpt Ỏpt Ỏpt

U 2 Ỏpt Ỏpt

U 3 Ỏpt

 .. …

Uk Ỏpt Ỏpt

Enumerate 4 2 2

This is a dynamic type table, and as said earlier it is built during the
analysis, and then it can be updated during the subsequent phase. It is
also updated regularly when the application is operational. Note that this
table becomes permanent part of the cloud application after its
development. Based on these monitoring results of the table, the
application can be tune-up to get better performance of the application
after its development. This can save computational cost and also reduce
the over-heads by temporarily disabling the functions, which have value
of Ỏpt less than threshold value. Thereafter, when the value of the

118|

Journal of Quality and Technology Management

|119

operator, Ỏpt, for a certain function increases than its threshold value, then
the function can be enabled. In Figure 4, we have shown a set of
requirements/demands of different user’s, they are given as follows:
Ỏpt(U1), Ỏpt(U2), Ỏpt(U3)……Ỏpt(uk).

Requirements Analysis Algebra:Designing Quality Software

Ỏpt(U1)= {F1, F2, Fn-2}

Ỏpt(U2) = {F1, Fn-2}

Ỏpt(U3) = {F1}

Ỏpt(Uk) = {F1,F2}

Figure 4. User’s Requirements Monitoring

4.3.5) Union and Intersection Operations

Now we define the set of operations/operators Union and Intersection on
user requirements to assess their usefulness. This can be helpful to the
software engineer/analyst.

i) Union Operator

Requirements of application are gathered from multiple and different
sources and hence are prone to be duplicated. The union (U) operator
filters out the redundant requirements, it operates on set requirements of
different users (as shown in Table 1), and gives a unique set of

requirements of clients i.e., F= {F1, F2, F3…. Fn-2, Fn-1, Fn}. ׊ FiєF. If total

number of users of an application is k, then Ỏpt (Requirement) =
Enumerate/k

֜Ỏpt (F1) = 4 / k’ Ỏpt (F2) = 2 / k’ Ỏpt (Fn-2)= 3 / k and so on ׊ FiєF

We develop only those requirements which have been Ỏ by the
numbers of users greater than the pre-determined threshold. The
threshold will is calculated by the analyst, using percentage of users.

120|

Journal of Quality and Technology Management

|121

Finally, we obtain the set of candidate requirements to be analyzed by the
analyst for the software development.

ii) Intersection Function

The Intersection operator returns the most important and popular
requirements of an application among its users. It provides the rating of
requirements as well as determines commonality. The commonality helps
to develop such requirements which are used by large number of users,
and it helps in the rating application’s requirements highest in demand.
The Intersection (∩) operator operates on the set of requirements. It is
observed that the operator U and ∩ differ, because of their objective.

4.4) Rules for operator Need (Nd)

In Appendix-I and Appendix-II, we give functional requirements’
dependency and their security Need (Nd) and security features for various
functions, respectively, of our case study/running example given in
Section 3. We have classified the security requirements of various
functions such as High, Medium and Low on the basis of their
vulnerabilities. Similarly, in Appendix-III, the input and output are
categorized based on their importance and vulnerabilities as Open (O),
Close (C), Secret (S) and Top Secret (T) and as Open (Op), Close (Cl), Secret
(Se) and Top Secret (To), respectively.

We assign the attributes as Open, Close, Secret and Top secret to an input
and output if it accessible to public, if it is only accessible to user after
certain timeframe, e.g., court decision, if it is accessible to only limited
number of users and it is accessible to only restricted users after certain
timeframe, respectively. The categories of security Needs operator, Nd, are
proposed, i.e., Low, Medium and High to assign the applications in which
securities are a crucial need. We are actively working to propose rules for
boundary cases such as when there is no input or output of a function. In
the following section, we give the rules to apply the Nd operator.

4.4.1) Rule for Single Input and Single Output

Input * Output = [O, C, S, T] * [Op, Cl, Se, To]

Requirements Analysis Algebra:Designing Quality Software

122|

={(O, Op), (O, Cl),(O, Se) ,(O, To) ,(C, Op) ,(C, Cl),(S, Se) ,(C, To) ,(S,
Op),(S, Cl), (C, Se) ,(C, To) , (T, Op), (T, Cl), (T, Se) , (T, To)
i) If (O, Op) v (O, Cl) Є (Input * Output) => Security “Low”
ii) If (O, Se) v (C, Op) v (T, Op) v (S, Op) v (C, Cl) Є (Input * Output)

=> Security “Medium”
iii) If (O, To) v (S, Se) v (S, Cl) v (S, To) v (C, Se) v (C, To) v (T, Se) v (T,

Cl) v (T, To) Є (Input * Output) => Security “High”

Journal of Quality and Technology Management

|123

4.4.2) Rule for Double Input and Single Output

Input * Input * Output = [O, C, S, T] * [O, C, S, T] * [Op, Cl, Se, To]
={(O, O, Op), (O, O, Cl),(O, O, Se),(O, O, To), (O, C, Op), (O, C, Cl),(O, C,
Se),(O, C, To),
(O, S, Op), (O, S, Cl),(O, S, Se),(O, S, To), (O, T, Op), (O, T, Cl),(O, T,
Se),(O, T, To),
(C, O, Op), (C, O, Cl),(C, O, Se),(C, O, To), (C, C, Op), (C, C, Cl),(C, C,
Se),(C, C, To),
(C, S, Op), (C, S, Cl),(C, S, Se),(C, S, To), (C, T, Op), (C, T, Cl),(C, T, Se),(C,
T, To),
(S, O, Op), (S, O, Cl),(S, O, Se),(S, O, To), (S, C, Op), (S, C, Cl),(S, C, Se),(S,
C, To),
(S, S, Op), (S, S, Cl),(S, S, Se),(S, S, To), (S, T, Op), (S, T, Cl),(S, T, Se),(S, T,
To),
(T, O, Op), (T, O, Cl),(T, O, Se),(T, O, To), (T, C, Op), (T, C, Cl),(T, C,
Se),(T, C, To),
(T, S, Op), (T, S, Cl),(T, S, Se),(T, S, To), (T, T, Op), (T, T, Cl),(T, T, Se),(T, T,
To)
i) If (O, S, Op) v (O, C, Op) Є (Input * Input * Output) => Security

“Low”
ii) If (O, S, Se) v (O, C, Se) v (O, S, Cl) v (O, T, Op) v (S, C, Op) v (C, T,

Op) v (C,T, Cl) Є (Input * Input * Output) => Security “Medium”
iii) If (O, S, To) v (O, C, To) v (O, T, Se) v (O, T, Cl) v (O, T, To) v (S, C,

Se) v (S, C, Cl) v (S, C, To) (C, T, Se) v (C, T, To) Є (Input * Input *
Output) => Security “High”

4.4.3) Rule for Double Input and Double Output

Input * Input * Output * Output =[O, C, S, T]*[O, C, S, T]*[Op, Cl, Se,
To]*[Op, Cl, Se, To]
={(O, O, Op, Op), (O, O, Op, Cl), (O, O, Op, Se), (O, O, Op, To), (O, O, Cl,
Op), (O, O, Cl, Cl), (O, O, Cl, Se), (O, O,
Cl,To)………………………………………… (T, T, To, To)
i) If (O, O, Op, Op) v (O, O, Op, Cl) v (O, O, Cl, Op)... Є (Input *

Input * Output* Output) => Security “Low”
ii) (O, O, Op, Se) v (O, O, Cl, Cl)… Є (Input * Input * Output* Output)

=> Security “Medium”

Requirements Analysis Algebra:Designing Quality Software

124|

iii) If (O, O, Op, To) v (O, O, Cl, Se) v (O, O, Cl, To) v (T, T, To, To)…
Є (Input * Input * Output* Output => Security “High”

Similarly, we can extend these rules for multiple options of composite
inputs and output. Moreover, we draw a conclusion that security such as
High, Average and Low is required on the basis of types of input(s) and
output(s) in Table 2. In our future work, we will also consider Operation,
Consequences and Probability.

Table 2: Security required on the basis of Types of Input(s) and Output(s)

Input * Output (Data/Information Type) Security

(O, To) v (S, Se) v (S, Cl) v (S, To) v (C, Se) v (C, To) v (T, Se) v (T, Cl) v
(T, To) High

(O, Se) v (C, Op) v (T, Op) v (S, Op) v (C, Cl) Medium

(O, Op) v (O, Cl) Low

5) IMPLEMENTATION OF RAA IN CASE STUDY

As, we have taken case study of E-legal system (for details please see
Section 3), for better understanding of the RAA of the functional and
security requirements during analysis. The main stake holders of the E-
legal system are Advocate, Litigants, Court’s staff, and judges. For better
understanding of the Algebra and its use in the requirement analysis, we
have assumed functional and security requirements of E-Legal system on
the basis of our experience and discussion with main stake holders of the
domain, which are illustrated in Table 3. Nd(Fi).

Nd(Fi) = Select {Sj:1≤ j≥16}.whereas 1≤ j≥36

Table 3: Functional Requirements of E-Filling

Depend Function Requirements Security

Input F1 Provide user’s information S1, S2, S3, S9

 F2 Selection of Electronic Facilities (E.F.)

F2 F3 Payment of E.F. Charges S13, S14, S15, S16

F1 F4 Generate User-id S11

Journal of Quality and Technology Management

|125

We have provided complete RAA of functional requirements of the in E-
Legal system in Figure 6.

Nd (F1)={S1,S2,S3,S9}
Ď (F3)= F2

Nd (F2)={S13, S14, S15, S16}
Ď (F4)=F1

Nd(F4)=S11

Ď(F5)=F4

Nd (F5)={S4,S5.S6,S11,S12}
Ď (F6)=F2

Nd (F6)=S8

Ď(F7) = F2

Nd (F7)=S8

Ď (F8)= F7

Nd (F8)=S8

Ď (F12)= F4

Nd (F12)=S8

Ď(F13)=F12

Nd (F13)=S9

Ď (F14)= F4, F7

Ď (F15)= {F7,F14}
Nd (F15)={S10, S11, S12, S13}

Ď (F17)= {F7, F8}
Nd (F17)=S8

Ď (F18)= {F7,F13}
Nd (F18)=S8

Ď (F19)=F13

Nd (F19)=S9

Ď (F20)= F13

Nd (F20)=S8

Ď (F21)= {F7,F13}
Nd (F21)={S8, S9}
Ď (F22)= (F2,F11)

Nd (F22)={S13, S14, S15, S16}
Ď (F23)= F22

Nd (F23)=S13

Ď (F24)=F23

Nd (F24)=S13

Ď (F25)=F15

Requirements Analysis Algebra:Designing Quality Software

126|

Ď (F26) =F11

Ď (F27)=F25

Ď (F28)=F26

Ď (F29) =F15

Ď (F30)= {F7,F12}
Ď (F31)={F7, F 12}
Ď (F32)=F27

Ď (F33)={F5,F6}
Ď (F34)=F28

Ď (F35)=F34

Ď (F36)=F35

Figure 5: Requirement Algebra of Functional Requirements

Figure 5, shows that F1 is not reliant upon any requirement, however
security S1, S2, S3, S9 are Nd for it.F3 is Ď upon F2 and S13, S 14, S15, S 16 is Nd
for it. F4 is Ď upon F1 and security S11 is Nd for it. F5 is Ď upon F4, however
S4, S5, S6, S12 are Nd for it. F6 is Ď upon F2; however security S8 is must for
it. F7 is Ď upon F2, however it Nd is S8. F8 is Ď upon F7, and S8 is Nd for it.
F12 is Ď upon F4, and S8 is Nd for it. F13 is Ď upon F12; however security S9
is Nd for it. F14 is Ď upon F4 and F7.F15 is Ď upon F7 and F14, whereas
security S10, S11, S12, S13 is Nd for it. F17 is Ď upon F7 and F8 and S8 is Nd for
it. F18 is Ď upon F7 and F13, whereas S8 is Nd for it. F19 is dependent upon
F13 and S9 is Nd for it. F20 is Ď upon F7 and S8 is Nd for it. F21 is Ď upon F7,

F13, however security S8,S9 is Nd for it. F22 is dependent upon F2, F11

however security S13, S14, S 15,S16 are Nd for it. F23 is Ď upon F22 however
security S13 is Nd for it. F24 is Ď upon F23 and S13 is Nd for it. F25 is Ď upon
F15, F26 is Ď upon F11, F27 is Ď upon F25, F28Ď upon F26, F29Ď upon F15,
F30Ď upon {F7,F12}, F31Ď upon {F7,F12}, F32Ď upon F27, F33Ď upon {F5,F6},
F34Ď upon F28, F35Ď upon F34 and F36Ď upon F35.

We observe from Table 3, that some functions like F1, F2, F3 andF4 are
totally independent. However, others including F5 and F6 etc., are
dependent; e.g., F5 is dependent on F1 that means that F1 is pre-requisite to
be executed before F5. Moreover, transitive property of linear algebra is
observed. As F1 is pre-requisite for F13 andF13 is pre-requisite for F19, which
shows that F1 is also pre-requisite for F19 i.e., F1 ĎF19.Over all, we observe
that for F5 the security requirements S4, S5, S6, S11 and S12 are essential and
integral part for the security of function F5.

Journal of Quality and Technology Management

Shows
total number of
security function
require to each
function.

Figure 6: Security Feature Nd by Functional Requirements

Figure 6, shows the degree of security of different functions in terms of
number of security features required for each of them. This graph infers
the functions of the system, which are more security conscious. In future,
we can also measure in terms of weight assignment, after assigning
weight to each security feature. As we have noted that, there are a large
number of functions for which security is a core element i.e. F1, F3, F5, F15,
and F22 Nd is 4 security feature to make them secure. In Figure 6,the dark
lines shows the graph of required security features whereas, the natural
numeric shows total number of security function r. Definitely, if we
follow this mechanism during SDLC, the security of the application will

|127

Requirements Analysis Algebra:Designing Quality Software

128|

improve. For comprehensive study and analysis of the security
requirements of the E-legal system, see details at Appendix-1.

It has been observed from Table 3, that as we move towards latter stages
of the application on such requirements, the security features decreases.
However, the dependency increases to maximum at the end of system.
Since the system already become secured, because of dependency among
other secured functional requirement. It means requirement dependency
is directly proportional to security requirements i.e., Ď α Security.

As the requirements squeezes the dependency and security squeezes too.
This shows that the security requirements are compulsory for different
functional requirements. That means functional requirements and
security requirements are inter-dependable.

Now, we will introduce mathematical model to incorporate security
requirements of E-Legal system (given in Table 3) during development
life cycle by using Requirement Analysis Algebra as a tool.

Table 4: Security Requirements of E-Filling

Dependence Security Requirement of E-Filing Function

 S1
Submission required details for creation of
account F1

S1 S2
Verification through e-mail (level-
1):Verification through mobile call(level-2) F1

S2 S3
Verification through any other service such
as SMS F1

 S4 User identity F4

S1 S5 Grant of password F4

S4 S6 Change the system generated password F5

S6 S7 Alert generation for password change

 S8 On-line verification of User (CNIC) F6, F7, F8, F12, F17,
F18, F20, F21

 S9
On-line verification of advocate from Bar
Associations F1, F13, F19, F21

Complete security requirements of the E-Legal system is given in
Appendix-II, where as its Algebra is provided in Figure 8.

Journal of Quality and Technology Management

|129

ΰ(S1)=F1

ΰ(S2)=F1

ΰ(S3)=F1

ΰ(S4)=F4

ΰ(S5)=F4

ΰ(S6)=F5

ΰ(S8)={F6, F7, F8, F12, F17, F18, F20, F21}

ΰ(S9)={F1, F13, F19, F21}

ΰ(S11)={F2, F5, F15}

ΰ(S12)={F5, F15}

ΰ(S13)={ F3, F15, F22, F23, F24}

ΰ(S14)= {F3,F22}

ΰ(S15)= {F3,F22}

ΰ(S16)= {F3,F22}

Figure 7: Utilization of Security for Various Functions

Figure 7, shows that S8is required by F6, F7, F8, F12, F17, F18, F20 and
F21.Although these security requirements are also dependent upon each
other, however we have not included this aspect presently in the RAA for
the time being. The importance of user’s functional and security concerns
has forced us to use mathematical modeling techniques which provide
the necessary foundation for software design. Moreover, by applying
these algebraic functions, it helps us to identify the required security
features.

Requirements Analysis Algebra:Designing Quality Software

Shows total
number of
functions which
requires each

Figure 8: Graph showing Security Features needed to Various Functions

The security and functionality may be significantly improved using RAA
while designing and developing a system demanding extensive security
measures for its implementation specifically in Cloud Computing
environment.

6) CONCLUSION AND FUTURE WORK

The proposed Requirements Analysis Algebra (RAA) presented in our
research work addresses findings partially as further research is in
progress. The research work is part of research carried out under title “A
Secured Methodology for Designing Cloud Computing Applications”
(Nasir A, 2013). The RAA proposed may be helpful in analyzing
applications in the analysis phase. The salient feature of the algebra is that
it built a table 1, of user versus their opted requirements using the Opt
operator (see Section 4.3.4). The novelty of these research findings is that
these can be used during the development phase and even later on when
the application is operational. The use of the table 1, during operational

130|

Journal of Quality and Technology Management

|131

phase may have its implication in monitoring and tuning up the software
applications in more rigorous way.

REFERENCES

Andreas Berl, Erol Gelenbe , Marco di Girolamo , Giovanni Giuliani,

Hermann de Meer , Minh Quan Dang and Kostas Pentikousis
(2010), “Energy-Efficient Cloud Computing” The Computer
Journal, Vol. 53, pp. 1045-1051.

Anis Charfi and Mira Mezini (2005), “Using aspects for security
engineering of web service compositions” in IEEE International
Conference on Web Services, pp. 59–66.

Awais Rashid, P Sawyer, A Moreira, J Araujo (2003), “Modularisation and
composition of aspectual requirements” in 2nd International
Conference on Aspect-Oriented Software Development (AOSD'03)
pp. 11-20.

Borko Furht, Armando Escalante (2010), Handbook of Cloud Computing,
Springer Science, Springer street, New York, USA Pp. 24.

Dan Svantesson, Roger Clarke (2010), “Privacy and consumer risks in
Cloud Computing”, Computer Law & Security Review 26, pp. 391-
397.

Feng Chen, Marcelo D. Amorim, and Grigore Rosu (2004),“A formal
monitoring-based framework for software development and
analysis, in Formal Methods and Software Engineering”, 6th
International Conference on Formal Engineering Methods 2004 pp.
357-372.

Hao Chen, David Wagner (2002), “MOPS: an infrastructure for examining
security properties of software”, 9th ACM conference on Computer
and communications security ACM 2002 pp. 235 – 244.

Hideyasu Sasaki (2011), “A computing theory for collaborative and
transparent decision making under time constraint”, Information
Systems Frontiers, Vol. 13 pp. 207-220.

Holtzblatt K., Hugh K. Beyer(1995), “Requirements Gathering: The
Human Factor”,Communication of the ACM 38, pp.31-32.

Javier E., David C., Arturo M. (2008), “Application Development over
Software-as-a-Service Platforms”, in 3rd International Conference
on Software Engineering Advances (ICESA 2008) IEEE Computer
Society, pp. 97-104.

http://dl.acm.org/author_page.cfm?id=81540485756&coll=DL&dl=ACM&trk=0&cfid=302183993&cftoken=98362169
http://dl.acm.org/author_page.cfm?id=81406593711&coll=DL&dl=ACM&trk=0&cfid=302183993&cftoken=98362169
http://www.ingentaconnect.com/content/klu/isfi
http://www.ingentaconnect.com/content/klu/isfi

Requirements Analysis Algebra:Designing Quality Software

132|

Jay Ligatti, Lujo Bauer, and David Walker (2005), “Enforcing non-safety
security policies with program monitors In Computer Security”
European Symposium on Research in Computer Security
(ESORICS 2005), Vol. 3679 pp. 55-373.

Jianwei Zheng (2010), “The Evolution Process and Economic Analysis of
Cloud Computing with Its Application in Chinese University”,
International Conference on Challenges in Environmental Science
and Computer Engineering IEEE 2010, Vol. 2, pp. 361-364.

John Harauz, Lori M. Kayfman, Bruce Porrer (2009), “Data Security in the
World of Cloud Computing” IEEE journal on Cloud Computing
Security, Vol. 7, pp. 61-64.

Leavitt, N. (2009), “Is Cloud Computing Really Ready for Prime Time?”,
Journal of Computer (IEEE Computer Society), vol. 42, pp. 15-20.

Lori M Kaufman (2009), “Data security in the word of Cloud Computing”
journal of IEEE Security & Privacy vol. 7, pp. 61-64.

Manal M. Yunis.A (2009), “cloud-free’ security model for cloud
computing”, in International Journal of Services and Standards, vol.
5, pp. 354-375.

Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph,
Randy Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel
Rabkin, Ion Stoica, and Matei Zaharia, “A View of Cloud
Computing”, Communications of the ACM, 53: 50-58 (2010).

Mostert, D. (1995), “A Technique to Include Computer Security, Safety,
and Resilience Requirements as Part of the Requirements
Specification”, Journal of Systems and Software, vol. 31 pp. 45-53.

Mythry Vuyyuru, Pulipati Annapurna, K. Ganapathi Babu, A.S.K Ratnam
(2012), “An Overview of Cloud Computing Technology”,
International Journal of Soft Computing and Engineering (IJSCE),
vol. 2 pp. 244-246.

Nasir, A (2013), Ph. D. dissertation “A Secured Design Methodology For
Developing Cloud Applications”, Department of Computer
Science & Engineering, University of Engineering and Technology,
Lahore, Pakistan (in progress).

NIST, (2009), “Cloud Computing Definition by National Institute of
Standards and Technology”, Publisher: NIST, pp. T 53: 50.

Paolo Bresciani, Paolo Giorgini, Haralambos Mouratidis, and Gordon
Manson (2004), “Multi-Agent Systems and Security Requirements
Analysis”, Software Engineering for Multi-Agent Systems II.
Lecture Notes in Computer Science2940, pp. 35-48.

http://link.springer.com/book/10.1007/b96018
http://link.springer.com/bookseries/558

Journal of Quality and Technology Management

|133

Paolo Giorgini, Fabio Massacci, John Mylopoulos, and Nicola Zannone
(2005), “St-tool: A case tool for security requirements engineering”,
13th International Conference on Requirements Engineering, IEEE
pp. 451-452.

Paul T. Jaeger, Jimmy Lin & Justin M. Grimes (2008), “Cloud Computing
and Information Policy? Center for Information Policy and E-
Government” Journal of Information Technology & Politics, vol. 5
pp. 269-283.

Pethuru Raj, Mohanavadivu Periasamy (2011), “The Convergence of
Enterprise Architecture (EA) and Cloud Computing”, in the book
Cloud Computing for Enterprise Architectures. Computer
Communications and Networks published by Springer: Pp 61-87.

Playle G., C Schroeder (1996), “Software Requirements Elicitation:
Problems, Tools, and Techniques”, in the Journal of Defense
Software Engineering, vol. 9 pp.19-24.

Qi Zhang, Lu Cheng, Raouf Boutaba (2010), “Cloud computing: state-of-
the-art and research challenges”, in the Journal of Internet Service
and Application (JISA), vol. 1pp. 7-18.

R. Glott, Elmar Husmann, Ahmad-Reza, Sadeghi Matthias
Schunter(2011), “Trustworthy Clouds Underpinning the Future
Internet”, The Future Internet, Lecture Notes in Computer Science,
6656, pp. 209-221.

Rachael King (2008), “Computing Heads for the Clouds”, Business Week
Magazine dated 08.08.2008.

Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg,
Ivona Brandic(2009), “Cloud computing and emerging IT
platforms: Vision, hype, and reality for delivering computing as
the 5th utility”, Future Generation Computer Systems, published
by Elsevier, 25, pp. 599-616.

Ran Li, Shoulian Tang, CeGuo, Xiaowei Hu (2010), “Thinking the cloud
computing in China”, Information Management and Engineering
(ICIME), 2nd IEEE International Conference pp. 669-672.

Ricky W. Butler, James L. Caldwell, Victor A. Carreno, C. Michael
Holloway, Paul S. Miner, and Ben L. Di Vito(1995), “NASA
Langley's Research and Technology Transfer Program in Formal
Methods” 10th Annual Conference on Computer Assurance
(COMPASS 95).

Vinu George and Rayford Vaughn (2003), “Application of Lightweight
Formal Methods in Requirement Engineering”,Crosstalk in the
Journal of Defense Software Engineering vol. 30.

http://www.tandfonline.com/loi/witp20?open=5#vol_5
http://link.springer.com/search?facet-author=%22Pethuru+Raj%22
http://link.springer.com/search?facet-author=%22Mohanavadivu+Periasamy%22
http://link.springer.com/book/10.1007/978-1-4471-2236-4
http://link.springer.com/bookseries/4198
http://link.springer.com/bookseries/4198
http://link.springer.com/book/10.1007/978-3-642-20898-0
http://link.springer.com/bookseries/558
http://www.sciencedirect.com/science/article/pii/S0167739X08001957
http://www.sciencedirect.com/science/article/pii/S0167739X08001957
http://www.sciencedirect.com/science/article/pii/S0167739X08001957
http://www.sciencedirect.com/science/article/pii/S0167739X08001957
http://www.sciencedirect.com/science/article/pii/S0167739X08001957
http://www.stsc.hill.af.mil/crosstalk/2003/01/George.html
http://www.stsc.hill.af.mil/crosstalk/2003/01/George.html

Requirements Analysis Algebra:Designing Quality Software

134|

APPENDIX-I

Depend Functional Requirement of E-Filing Security

Input F1 Provide user’s information S1, S2, S3, S9

 F2 Selection of Electronic Facilities (E.F.)

F2 F3 Payment of E.F. Charges S13, S14, S15,
S16

F1 F4 Generate User-id S11

F4 F5 Access the system through user’s account _login S4, S5, S6,
S12

F2 F6
Access the information through CNIC from National

Database. S8

F2 F7
To intake Applicant info on the basis of CNIC from

Database S8

F7 F8
Submission of respondents’ information using

CNICs S8

 F9 Provision of relevant law

 F10 Provision of relevant citation

 F11 Verification of relevant law/citation

F4 F12 Submission of Advocate Identity S8

F12 F13 Verification of advocate identity S9

F4, F7 F14 Attach relevant documents & citations

F 7, F14 F15

Submission of evidences, for example in criminal
case FIR, report of medical and forensic science

laboratory, DNA test etc. and in case of civil/family
property, registration, Fardmalkiat, transfer deeds

and marriage certificate, departments etc.

S10, S11, S12,
S13

 F16 verification from relevant departments

F7, F8 F17 Submission of Undertakings S8

F7, F13 F18 Submission of Oath S8

F13 F19 Signatures of advocate S9

F7 F20 Signature of litigant S8

F7,13 F21
Verification of Signatures of advocate and litigant

public. S8, S 9

Journal of Quality and Technology Management

|135

Depend Functional Requirement of E-Filing Security

F2, F11 F22 Payment of court fee S13, S14, S15,
S16

F22 F23 Issuance proof of court fee S13

F23 F24 Verification of court fee S13

F15 F25 Issuance of unique diary

F11 F26 Assign relevant law

F25 F27 Checking of all requisite documents

F26 F28 Checking of relevant provisions of law/citations

F15 F29 Point out deficiency, if any

F7, F12 F30 Intimate/notify to the concerned

F7, F12 F31 Receive objections

F27 F32 Address/remove the objections

F5, F6 F33 Re-submission after removal of objections

F28 F34 Issue the unique case No.

F34 F35
Marking of the case to the relevant bench/judge as

per category

F35 F36 Fix the hearing date

Requirements Analysis Algebra:Designing Quality Software

136|

APPENDIX-II

Dependence Security Requirement of E-Filing Function

 S1
Submission required details for creation of
account F1

S1 S2
Verification through e-mail (level-
1):Verification through mobile call(level-2) F1

S2 S3
Verification through any other service such
as SMS F1

 S4 User identity F4

S1 S5 Grant of password F4

S4 S6 Change the system generated password F5

S6 S7 Alert generation for password change

 S8 On-line verification of User (CNIC) F6, F7, F8,F12, F17,
F18, F20, F21

 S9
On-line verification of advocate from Bar
Associations F1, F13, F19, F21

S4 S10 Access to the system F2, F15

S4 S11 Submission of user through ID F2, F5, F15

Verification of user through password
(level-1) F5, F15

S4 S12
Verification of user through digital Figure
(e.g. Captcha) selected characters of the
password (Even next Level can be added to
restrict cut, paste etc.)

S10 S13
Checking of availability of funds in the
relevant account

F3, F15, F22, F23,
F24

S11, S12 S14 Transfer of funds through password F3, F22

S11, S12 S15 Use of some smart/credit card etc. F3, F22

S14, S15 S16 Payment of court fee through credit card F3, F22

Journal of Quality and Technology Management

|137

APPENDIX-III

Input Output Functional Requirement of E-
Filing Data/Inform

ation Type
Data/Inform
ation Type

Consequences Security

F1
Provide user’s
information Secret Secrete Confidentiality High

F2
Selection of Electronic
Facilities (E.F.) Open Open Integrity Medium

F3
Payment of E.F.
Charges Open Secrete Integrity High

F4 Generate User-id Top Secret Top Secret Confidentiality High

F5

Access the system
through user’s account
_login

Secret Secrete Confidentiality High

F6

Access the information
through CNIC from
National Database.

Open Open Availability Low

F7

To intake Applicant info
on the basis of CNIC
from Database

Open Open Availability Low

F8

Submission of
respondents
information using
CNICs

Open Open Availability Low

F9
Provision of relevant
law Open Open Availability Low

F10
Provision of relevant
citation Open Open Availability Low

F11
Verification of relevant
law/citation Open Open Availability Low

F12
Submission of Advocate
Identity Close Open Integrity,

Availability Low

F13
Verification of advocate
identity Close Open Availability Low

F14
Attach relevant
documents & citations Open Open Availability Low

F15

Submission of
evidences, for example
in criminal case FIR,
report of medical and
forensic science
laboratory, DNA test
etc. and in case of
civil/family property,
registration,
Fardmalkiat, transfer
deeds and marriage

Close Close Availability Low

Requirements Analysis Algebra:Designing Quality Software

138|

Input Output Functional Requirement of E-
Filing Data/Inform

ation Type
Data/Inform
ation Type

Consequences Security

certificate, departments
etc.

F16
verification from
relevant departments Close Close Integrity,

Availability High

F17
Submission of
Undertakings Close Close Integrity,

Availability High

F18 Submission of Oath Close Close Availability High
F19 Signatures of advocate Open Open Availability High
F20 Signature of litigant Open Open Availability High

F21

Verification of
Signatures of advocate
and litigant public.

Close Close Integrity,
Availability Low

F22 Payment of court fee Open Open Availability High

F23
Issuance proof of court
fee Close Close Integrity,

Availability High

F24 Verification of court fee Close Close Integrity,
Availability High

F25
Issuance of unique
diary Close Close Integrity High

F26 Assign relevant law Open Open Availability Low

F27
Checking of all requisite
documents Secret Secrete Availability High

F28

Checking of relevant
provisions of
law/citations

Open Open Availability Low

F29
Point out deficiency, if
any Open Open Availability High

F30
Intimate/notify to the
concerned Open Open Availability High

F31 Receive objections Open Open Availability Low

F32
Address/remove the
objections Open Open Availability High

F33
Re-submission after
removal of objections Close Close Availability High

F34
Issue the unique case
No. Open Open Availability High

F35

Marking of the case to
the relevant
bench/judge as per
category

Open Open Availability High

F36 Fix the hearing date Open Open Availability High

	ABSTRACT
	1) INTRODUCTION
	2) LITERATURE REVIEW
	2.1) Cloud Computing Services
	3) E-LEGAL SYSTEM
	4) REQUIREMENT ANALYSIS ALGEBRA (RAA)
	4.1) Atomic and Composite Requirements
	4.2) Requirement Types
	4.3) Operators
	4.3.1) Need Operator
	4.3.2) Vital Operator
	4.3.3) Dependent Operator
	4.3.4) Opted Operators
	4.3.5) Union and Intersection Operations

	4.4) Rules for operator Need (Nd)
	4.4.1) Rule for Single Input and Single Output
	4.4.2) Rule for Double Input and Single Output
	4.4.3) Rule for Double Input and Double Output

	5) IMPLEMENTATION OF RAA IN CASE STUDY
	6) CONCLUSION AND FUTURE WORK
	REFERENCES

